استفاده از مدل هوش مصنوعی مرکب نظارت شده برای بهبود مدل دراستیک (مطالعه موردی: آبخوان دشت اردبیل)
نویسندگان
چکیده مقاله:
آلودگی منابع آب زیرزمینی به علت نفوذ آلایندهها از سطح زمین به سامانه آب زیرزمینی بهویژه در مناطق خشک و نیمهخشک که با کمبود کمی و کیفی منابع آب روبهرو هستند؛ یکی از معضلات جدی به شمار میآید. بنابراین ارزیابی آسیبپذیری آب زیرزمینی به منظور شناسایی مناطق دارای پتانسیل بالای آلودگی برای مدیریت منابع آب زیرزمینی ضروری است. در این پژوهش آسیبپذیری آبخوان دشت اردبیل در برابر آلودگی با استفاده از روش دراستیک مورد بررسی قرار گرفت. در مدل دراستیک هفت متغیر مؤثر در آسیبپذیری که شامل ژرفای آب زیرزمینی، تغذیه خالص، محیط آبخوان، محیط خاک، توپوگرافی، محیط غیر اشباع و هدایت هیدرولیکی است؛ بهصورت هفت لایه رستری تهیه شد و پس از رتبهدهی و وزندهی شاخص دراستیک به دست آمد که برای دشت اردبیل شاخص دراستیک میان 82 تا 151 به دست آمد. اما از آنجایی که مشکل اصلی این مدل اعمالنظرهای کارشناسی برای رتبهدهی و وزندهی متغیرهای به کار رفته در آن است؛ بنابراین هدف اصلی این پژوهش بهبود مدل دراستیک با استفاده از 5 روش هوش مصنوعی از جمله شبکه عصبی پیشرو، شبکه عصبی برگشتی، فازی ساجنو، فازی ممدانی و مدل مرکب است. تا بدین روش بتوان به نتایج دقیقتری از ارزیابی آسیبپذیری دست یافت. با توجه به ناهمگنی موجود در دشت اردبیل این دشت به سه بخش خاوری، باختری و جنوبی تقسیم و مدلهای هوش مصنوعی بهطور جداگانه برای هر بخش اجرا شد. به این منظور متغیرهای دراستیک به عنوان ورودی مدل و شاخص دراستیک به عنوان خروجی مدل تعریف شدند و مقادیر نیترات مربوطه به 2 دسته آموزش و آزمایش تقسیم شد. شاخص دراستیک مربوط به مرحله آموزش با مقادیر نیترات مربوطه تصحیح و پس از آموزش مدل، در مرحله آزمایش نتایج مدلها با استفاده از مقادیر نیترات ارزیابی شد. نتایج نشان داد که همه روشهای هوش مصنوعی توانایی بالایی در بهبود مدل دراستیک دارند؛ اما در این میان، مدل هوش مصنوعی مرکب (SCMAI) نتایج بهتری را دربر داشت. بر پایه این مدل، بخشهای باختری و شمالی دشت پتانسیل آلودگی بالایی دارد و باید محافظت بیشتری از این مناطق صورت گیرد.
منابع مشابه
بهبود نتایج حاصل از مدل دراستیک با استفاده از هوش مصنوعی جهت ارزیابی آسیب پذیری آبخوان آبرفتی دشت رامهرمز
سابقه و هدف: آلودگی آبهای زیرزمینی یک فرآیند پیچیده و پر از عدم قطعیت، در مقیاس منطقهای میباشد. توسعه یک روش یکپارچه جهت ارزیابی آسیبپذیری آبخوانها، میتواند به منظور مدیریت بهینه و حفاظت از آنها کارامد باشد. دشت رامهرمز به دلیل داشتن خاک حاصلخیز و منابع آب کافی دارای زمینهای مستعد کشاورزی است که به دلیل توسعه کشاورزی، استفاده از کودهای شیمیایی و مواد آفتکش همواره در معرض خطر آلودگی قر...
متن کاملاستفاده از مدل هوش مصنوعی مرکب نظارت شده برای پیشبینی سطح آب زیرزمینی
منابع آب زیرزمینی از مهمترین منابع تأمین آب هستند، لذا مدلسازی آنها حائز اهمیت میباشد. در این میان مطالعه و بررسی نوسانات سطح آب زیرزمینی از نظر مطالعات مدیریتی، ایجاد سازههای مهندسی، مصارف کشاورزی و حصول آبهای زیرزمینی با کیفیت بالا از اهمیت بالایی برخوردار است. عمده تقاضا برای آب شرب و کشاورزی در دشت مشگینشهر نیز از طریق آب زیرزمینی تأمین میشود. در این تحقیق چهار مدل هوش مصنوعی که عبا...
متن کاملاستفاده از روشهای مختلف فازی برای بهینهسازی مدل دراستیک در ارزیابی آسیبپذیری آبخوان، مطالعه موردی: آبخوان دشت تبریز
با توجه به تمرکز جمعیت، فعالیتهای کشاورزی و کارخانههای صنعتی در دشت تبریز، ارزیابی آسیبپذیری آبخوان این دشت برای توسعه، مدیریت، تصمیمات کاربری اراضی و جلوگیری از آلودگی آبهای زیرزمینی ضرورری به نظر میرسد. در این پژوهش، آسیبپذیری آبخوان پیچیده دشت تبریز در برابر آلودگی به کمک مدل دراستیک در محیط GIS بررسی شده و بهینهسازی این مدل توسط روشهای مختلف فازی صورت گرفت. در مدل دراستیک از پارامت...
متن کاملتوسعه مدل های هوش مصنوعی مرکب در برآورد قابلیت انتقال آبخوان، مطالعه موردی: دشت تسوج
پارامترهای هیدروژئولوژیکی از جمله قابلیت انتقال یکی از مهمترین پارامترهای ورودی در مدل سازی آبهای زیرزمینی است که عموماً تعیین آن برای نقاط مختلف آبخوان با هزینه های فراوانی انجام می گیرد. آبخوان دشت تسوج یکی از آبخوانهای حاشیه دریاچه ارومیه می باشد که در دهه اخیر با افت سطح آب زیرزمینی مواجه شده و نیازمند مدیریت کمی و کیفی است. بنابراین، در این تحقیق به عنوان مرحله اول، از مدل های منطق فازی، شب...
متن کاملاستفاده از مدل هوش مصنوعی مرکب نظارت شده برای پیش بینی سطح آب زیرزمینی
منابع آب زیرزمینی از مهمترین منابع تأمین آب هستند، لذا مدلسازی آنها حائز اهمیت میباشد. در این میان مطالعه و بررسی نوسانات سطح آب زیرزمینی از نظر مطالعات مدیریتی، ایجاد سازههای مهندسی، مصارف کشاورزی و حصول آبهای زیرزمینی با کیفیت بالا از اهمیت بالایی برخوردار است. عمده تقاضا برای آب شرب و کشاورزی در دشت مشگینشهر نیز از طریق آب زیرزمینی تأمین میشود. در این تحقیق چهار مدل هوش مصنوعی که عبا...
متن کاملبهینهسازی مدل دراستیک با استفاده از هوش مصنوعی جهت ارزیابی آسیبپذیری آبزیرزمینی در دشت مراغه- بناب
ارزیابی آسیبپذیری آبخوان به منظور تعیین مناطق دارای پتانسیل آلودگی برای مدیریت منابع آبزیرزمینی از اهمیت بالایی برخوردار است. در این تحقیق، با استفاده از مدل دراستیک ارزیابی آسیبپذیری آب زیرزمینی در آبخوان دشت مراغه- بناب برآورد شده است. در مدل دراستیک از پارامترهای مؤثر در ارزیابی آسیبپذیری سفرۀ آب زیرزمینی شامل ژرفای سطح ایستابی، تغذیه، جنس سفره، نوع خاک، شیب توپوگرافی، مواد تشکیلدهندة م...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 26 شماره 104
صفحات 113- 124
تاریخ انتشار 2017-08-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023